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Lecture #5
Amperometric Biosensors
(with Oxidases and P450)
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Lecture Outline

(Book Bio/CMOS: Chapter’ paragraphs § 8.2 & 8.5-8)

P450 based principle of detection

Electrochemical interfaces with
enzymes

Faradaic currents at the interface

Electrochemical cells and equivalent
circuits
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CMOS/Sample interface
_ - -
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The interface between the CMOS circuit and the bio-
sample needs to be deeply investigated and organized
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Redox with P450

The typical redox involving a cytochrome P450 is as follows:

RH + 0, + NADPH + H*—*°_, ROH + NADP* + H,0

The coenzyme NADPH 1s mainly providing the need for two
electrons required by the drug transformation. Without NADPH,
the reaction occurs in water solution using hydrogen ions by
water but need two extra electrons:

RH + O, + 2H* +@ P40, ROH + H,0
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P450 Cytochromes working Principle
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faster secreted
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P450-based Detection
®

Drugs Oxidized drugs

Oxygen Cytochrome P450
Amperometric

@ Detection !
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P450 based Detection

H (e.g. benzphetamine

Cytochrome
B> P450 2B4

\ R-OH Oxidized form /

What’ s about the electro-CHEMICAL properties?
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P450 based Detection
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Current versus the redox species amount
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(c) S.Carrara




How to measure a redox

reaction?
Vo

R
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The three-electrode
Electrochemical cell
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(c) S.Carrara

10



Different kinds of three-
electrode Electrochemical-cell

Electrodes

Ratxd) (&efmme Waork
i wh ng
(Pt wi!g ¥ (Pt Auoc )

Moveable
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The three-electrode
Electrochemical cells
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Electrochemical cells
with multiple-electrodes

Multiple-WE Common RE Common CE
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Detection Constrains
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Equivalent circuit
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Equivalent circuit with
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Faradaic currents
from Crono-Amperometry

3C;
) 2C; l
=
{ I _
& J |
ai|
‘ Constant bias

Time

S.Carrara ©

17



p

Faradaic currents
from Cyclic Voltammetry

Oxidation Potential

eak +< Oxidation peak
= 0
2 A
= 4 Potential
@)
Standard Potential
Reduction peak Reduction Potential

S.Carrara, EPFL Lausanne
(Switzerland)
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CV with Hydrogen Peroxide
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Redox with Hydrogen Peroxide

The hydrogen peroxide provides two possible redox reactions. An
oxidation:
C650 m3
Hzoq2 =0, + 2H" +

The produced Oxygen can be further reduced :

C700 mi>
O,+4H" +20
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Relevant Redox Reactions Equations?

]MAX — f ([C ]) Nernst equation

Randles-SevcCik
equation

I=f(C ],t)|V:COnS, Cottrell equation
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To derive electrochemical Equations we
need of the Laplace’ s Transforms

o ()

L[—} =sf(s)— f(0)

Ot

}—s 7(s)—s £(0)— {af (‘)}

Ot
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Fick’s Laws

The mass flow also has a direction driven by the gradient of
concentration (defined by means of the vector differential
operator):

— — N
Jm = —DVC(x,t)

In non-vector form (by rotating the x-axis in the direction of the
maximum flux and neglecting the variations on y- and z-axes):

L 0C(%;1)
N

The accumulation rate 1s provided by the mass flux through a

fluidic volume: . ’
OC(x,t)  Ojp . 0C(x,t) Da C(x,?)

Ot Ox ot Ox?
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The Cottrell Equation

[C1] Linear diffusion equation

,Al oC(x,t) .. 0°C(x,t)
o <2 o

L [&’;ﬂ — 57 (s)~ £ (0)

-
sC(s,1)~ C(x,0)= D° g(j’t )
X

C(x,0) = C(x —> o,) = C,

Gy
D

~ 2~ C(x,5) =—
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The Cottrell Equation

) ~
IES) 5 ) =-2
OX D D
é(.x,S) — &'I'A(S)e_ s/ Dx +B(s)esmx
S
lim C(x,£) = C i
— limC(x,S) :&
X—>00 S
B(S) — O, while é(x.s) — ﬂ 4 A(S)e_ s/ Dx
S
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The Cottrell Equation

[C1] Linear diffusion equation

A C
I , l Boundary conditions Co(x, S) =—O+A(S)e_ s/ Dx
S

>

V=Vo J\ By definition
— t

/ (x 1 nFA\/BC( X, 1)
Linear relationship 7 - — —
h L [C] Jr

Cottrell equation
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Redox reactions from Voltammetry

Randles-SeVéikL

Oxidation Potential

|

quation Oxidation peak

rFeak current

Z

Reduction peak

Standard Potential

ReductiorI Potential
vV
Nernst equation
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Standard free energy

Redox Reactions

(1 — a)F(E - EY)

Reaction coordinate

(c) S.Carrara
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Nernst Equation

Redox Reaction _Ke o
O+e < R
Equilibrium Constants Kg

( _AG, _w AG?  aF (E-E°)
_ 1,0, RT AL RT SErvall EE—
kc—kce —kce ::kcoe RTe RT
) _AG, _AG)-(1-a)F (E-E°) AG! (-a)F(E-E°)
_ RT 0 i _ 170 RT , RT
k,=k,e ke =k)e He
@ Equilibrium:

_AG, _AG,

E=0;aa=05k =k, = k)e 7 =kle * =k’
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Nernst Equation

_aF (E-E°)
Redox Reaction _ K o RT
O +e << R (1-a)F(E-E°)
<% RT

The current from the redox i1s

i=i —i, =nFAlk.C,(0,t)—k,C,(0,1)]

_aF (E-E°) (1-a)F(E-E")

i=FAK’| C,(0,0)e *T  —C,(0,H)e %7

@ Equilibrium:
aF (E-E°) (1-a)F(E-E")

i=0=C,(0,0)e X =C,(0,0)e &
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Nernst Equation

@ Equilibrium:

_aF (E-E°) (I-a)F(E-E°)

i=0=C,(0,0))e & =C,(0,0)e &

C,(0,7) FEED _ F(E-E) _ h{ C, (o,z)}

i=0=> —e
C(0,2) C(0,2)

E=E"° +—ln{ 0V, t)} ,
A ICDRI Nernst equation

If n electrons are involved!

(c) S.Carrara
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Redox reactions from Voltammetry

I

Oxidation Potential

Oxidation peak

reak current

Randles-Sevcik e(]uation /

+vt

Z

Reduction peak
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Randles-Sevcik Equation

Voltage Sweep F(E+vt—E°)
Co(0,87) —F—
— =€
E E6+ Lt C.(0,0)
C,(x,5)=—2+ A(s)e """
S
jnr)="0) - nFD{ oc (! )} = i(t) = nFAD[ oC (! )}

A 5)6 =0 Ox x=0

nFDv

oC(x, FD
{ (“)] o [F-22C(0,8) = (r) = nFAD C(0,7)

e RT
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Randles-Sevcik Equation

Voltage Sweep

F(E+vt—-E")
CO(Oat) —e J;z;

i(t)==nFAD

» [C]

c) S.Carrara 34
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Redox reactions from Voltammetry

Randles-Sevcéik equation for the Peak current

1/2 Oxidation Potential
D
i(O,t)oanAD(n];; j C(0,7)

Oxidation peak

Reduction peak ReductiorI Potential

Nernst equation
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