

#### **EDMI** Microsystems and Microelectronics

MICRO-614: Electrochemical Nano-Bio-Sensing and Bio/CMOS interfaces

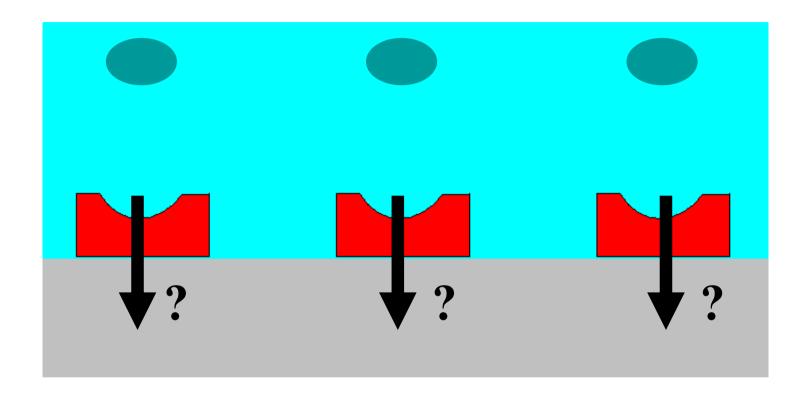
# Lecture #5 Amperometric Biosensors (with Oxidases and P450)

#### **Lecture Outline**

(Book Bio/CMOS: Chapter' paragraphs § 8.2 & 8.5-8)

- P450 based principle of detection
- Electrochemical interfaces with enzymes
- Faradaic currents at the interface
- Electrochemical cells and equivalent circuits

# **CMOS/Sample interface**



The interface between the CMOS circuit and the biosample needs to be deeply investigated and organized

### Redox with P450

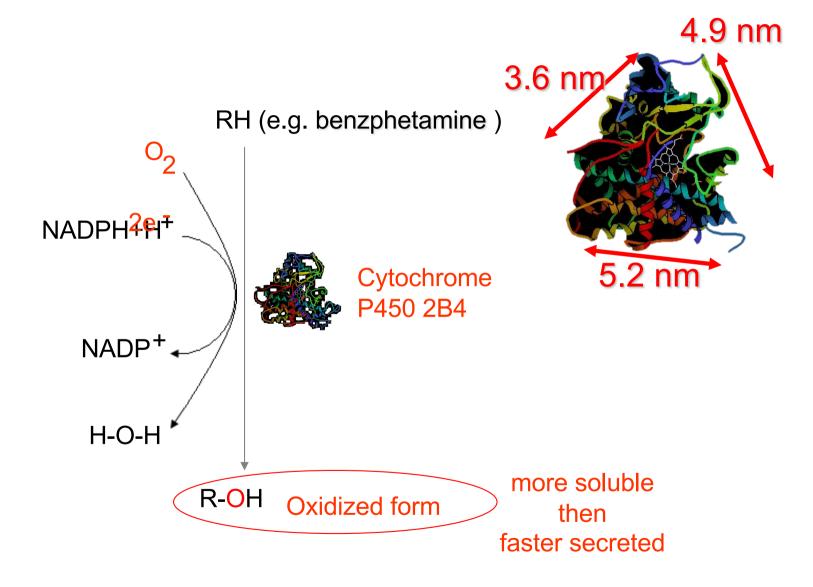
The typical redox involving a cytochrome P450 is as follows:

$$RH + O_2 + NADPH + H^+ \xrightarrow{P450} ROH + NADP^+ + H_2O$$

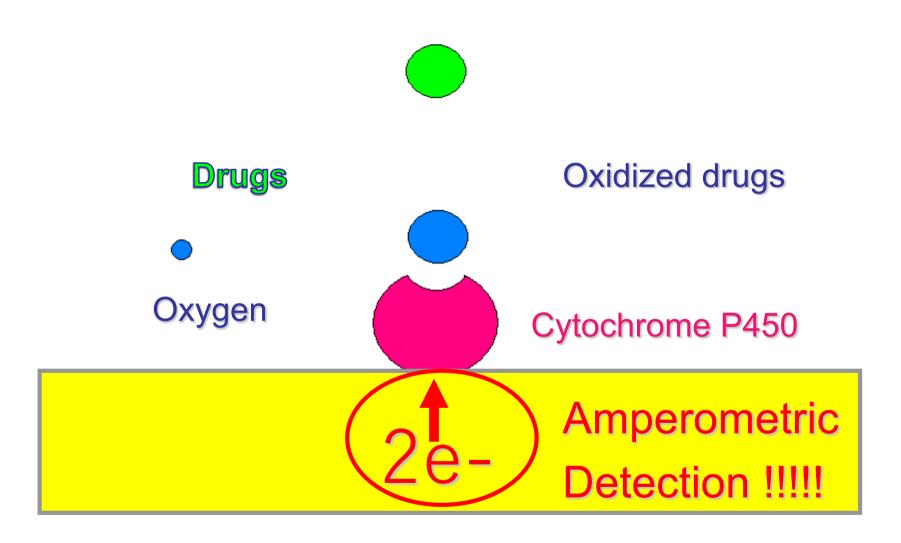
The coenzyme NADPH is mainly providing the need for two electrons required by the drug transformation. Without NADPH, the reaction occurs in water solution using hydrogen ions by water but need two extra electrons:

$$RH + O_2 + 2H^+ + 2e^- \xrightarrow{P450} ROH + H_2O$$

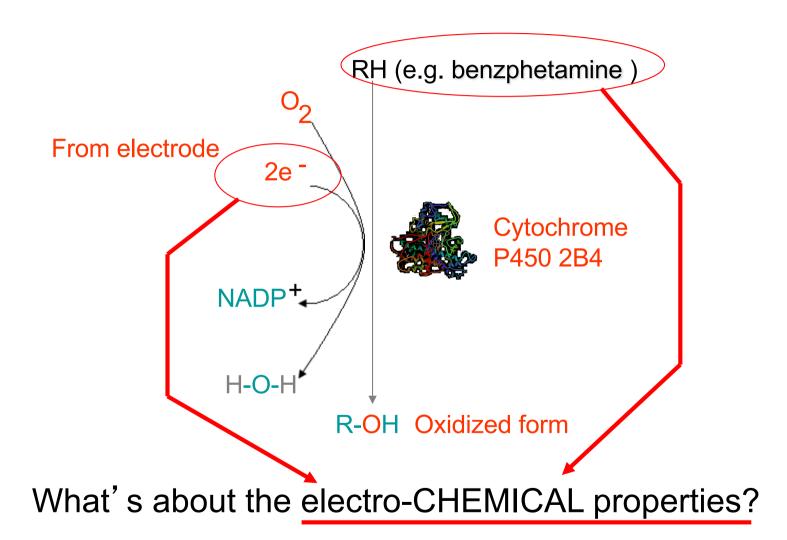
# P450 Cytochromes working Principle



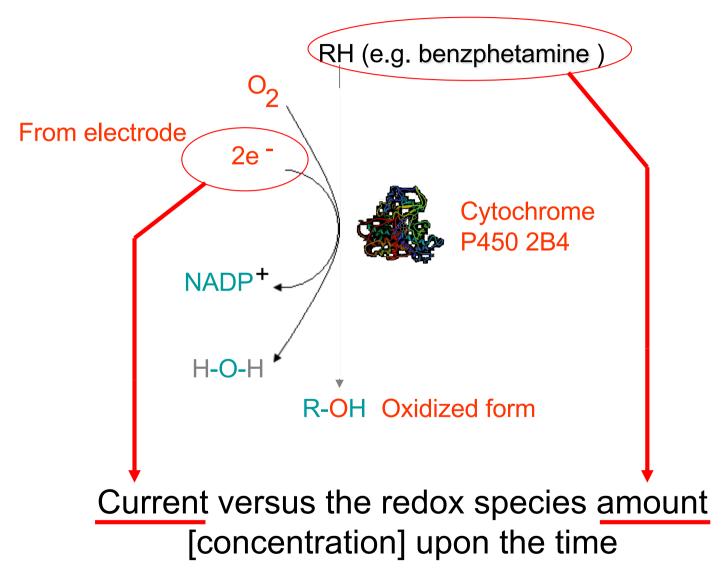
#### **P450-based Detection**



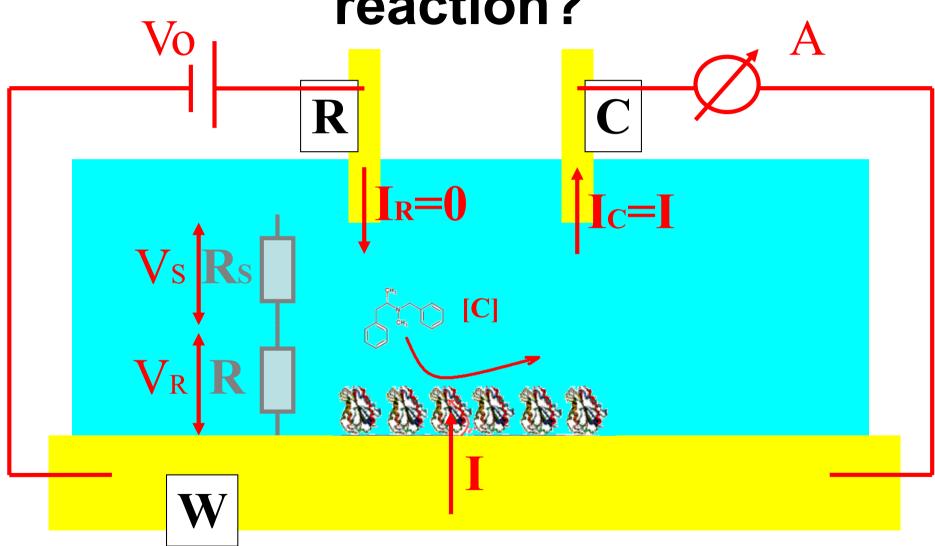
### P450 based Detection



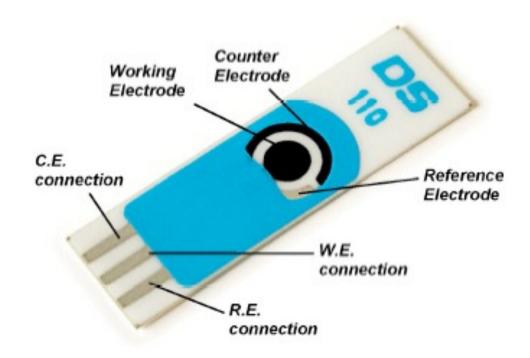
### P450 based Detection



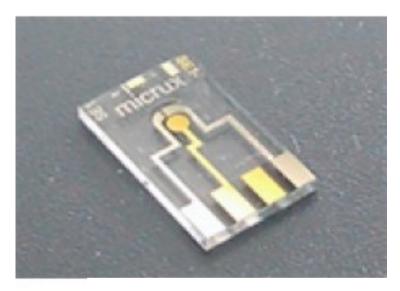
# How to measure a redox reaction?



# The three-electrode Electrochemical cell

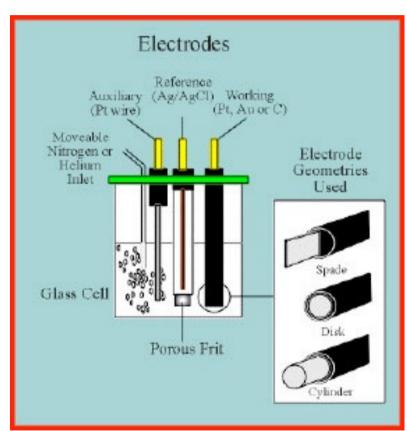


# Different kinds of threeelectrode Electrochemical-cell

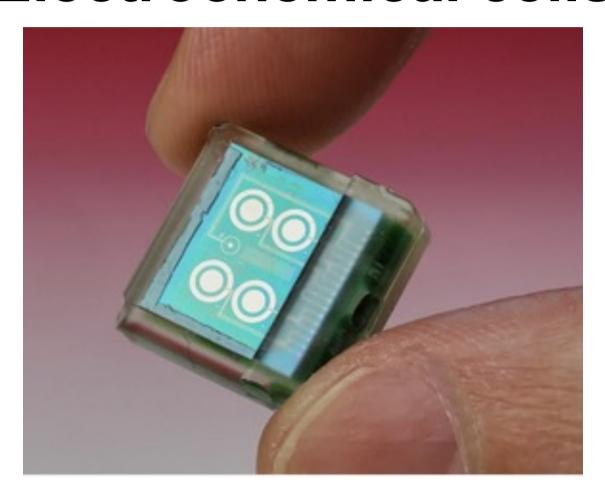




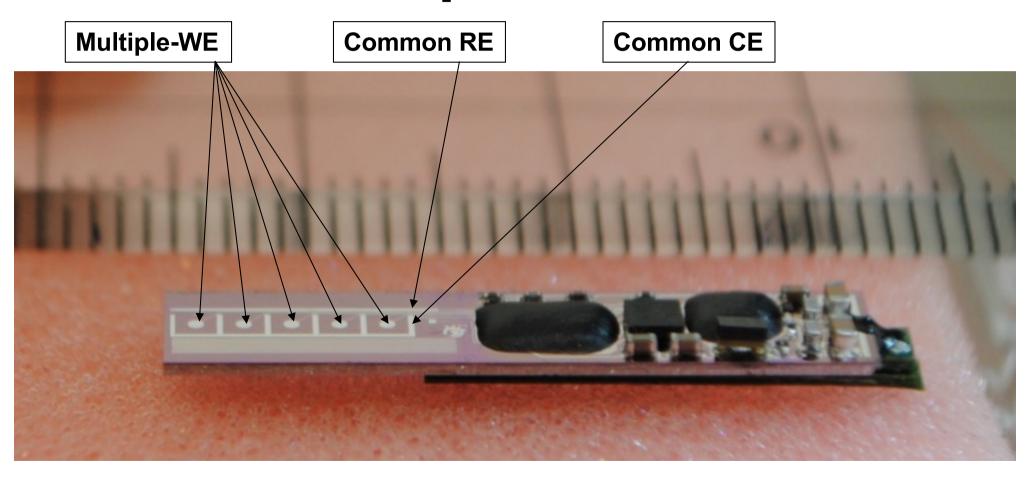




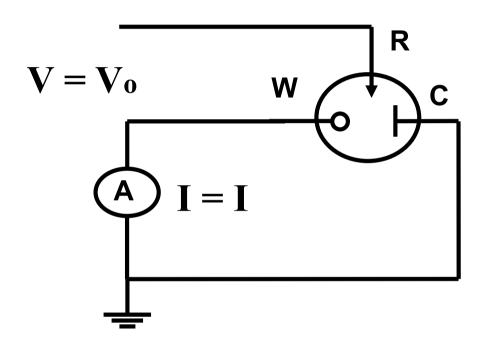
# The three-electrode Electrochemical cells



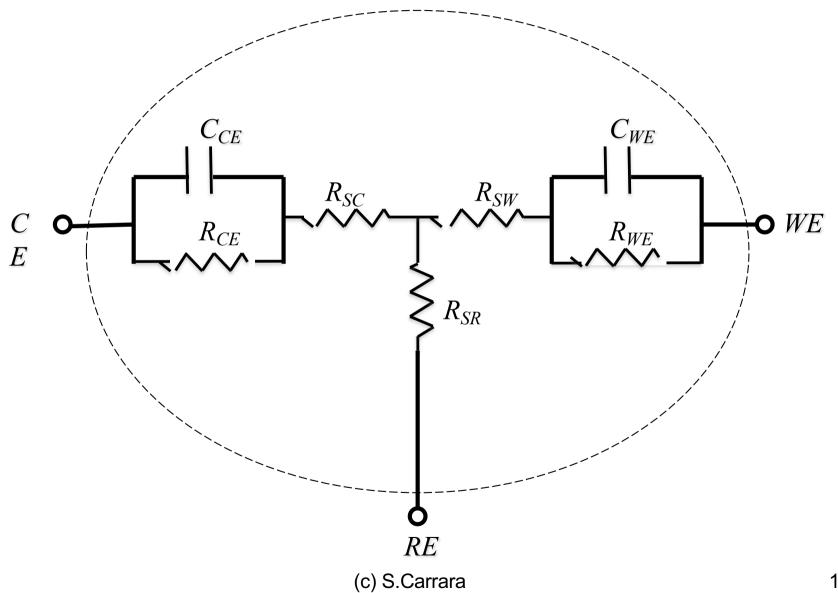
# Electrochemical cells with multiple-electrodes



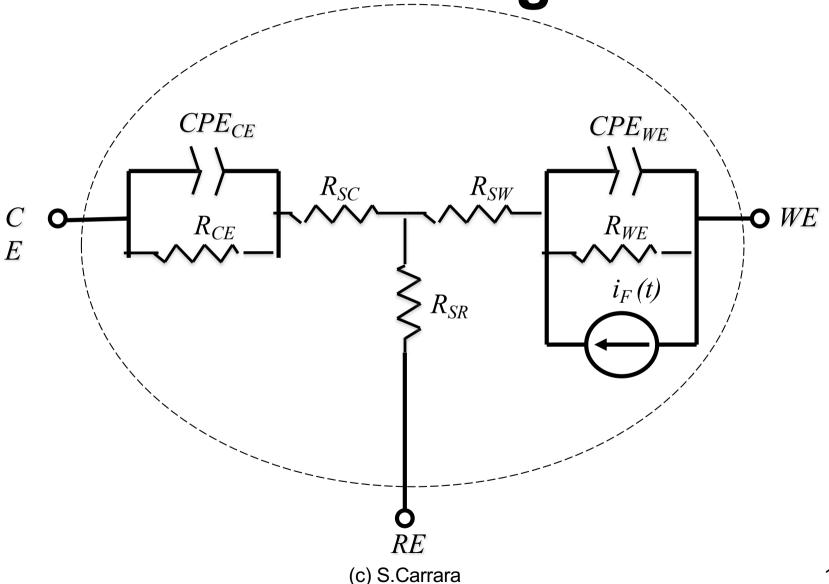
# **Detection Constrains**



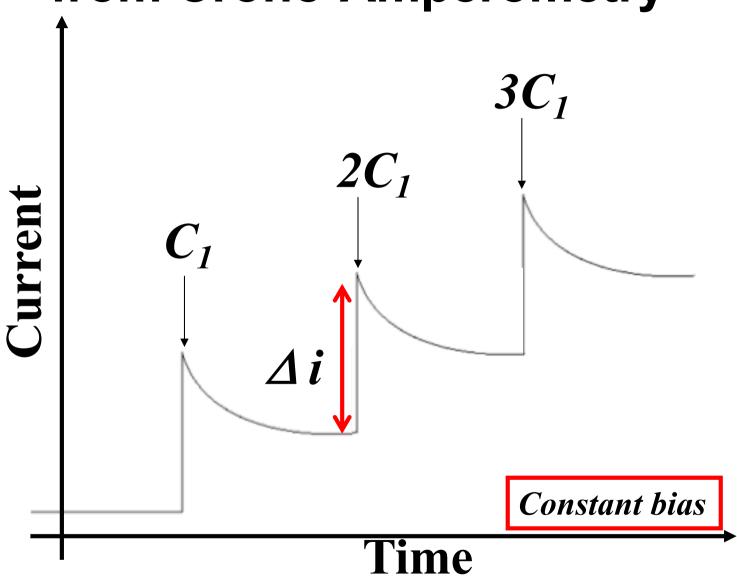
# **Equivalent circuit**



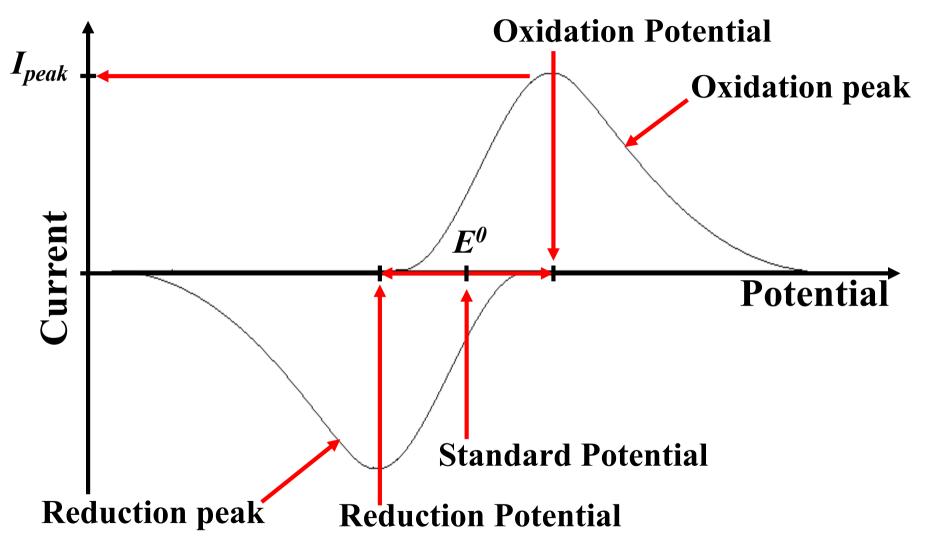
# Equivalent circuit with Faradaic current-generator



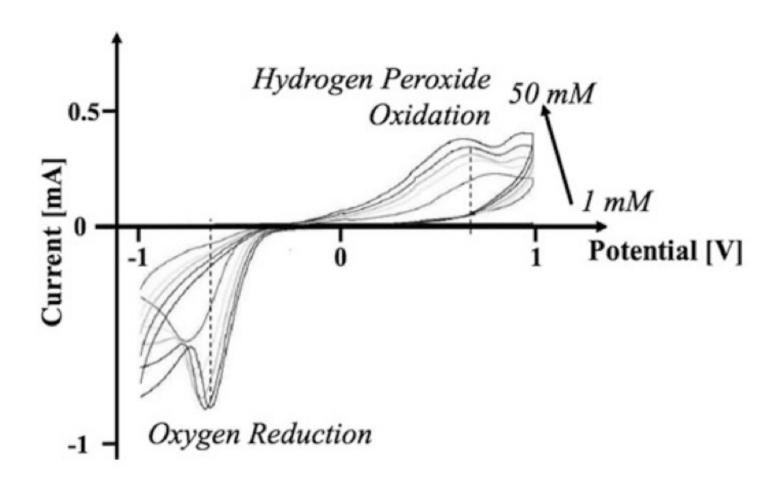
# Faradaic currents from Crono-Amperometry



# Faradaic currents from Cyclic Voltammetry



# CV with Hydrogen Peroxide



O+ reduction and H2O2 oxidation observed by potential sweeping

# Redox with Hydrogen Peroxide

The hydrogen peroxide provides two possible redox reactions. An oxidation:

$$H_2O_2 \to O_2 + 2H^+ + 2e^-$$

The produced Oxygen can be further reduced:

$$O_2 + 4H^+ + 4 e^{-700 \, mV}$$

# Relevant Redox Reactions Equations?

$$V_{I_{MAX}} = f([C])$$
 Nernst equation

$$I = f([C], V) \Big|_{\frac{dV}{dt} \neq 0}$$
 Randles-Sevčik equation

equation

$$I = f([C], t)|_{V=Const}$$
 Cottrell equation

# To derive electrochemical Equations we need of the Laplace's Transforms

$$F(s) = L_s[f(t)] = \hat{f}(s) = \int_0^{+\infty} f(t)e^{-st}dt \qquad L_s[t^n] = \frac{n!}{s^{n+1}}$$

$$L_s[af(t)+bg(t)] = aL_s[f(t)]+bL_s[g(t)] = a\widehat{f}(s)+b\widehat{g}(s)$$

$$L_{s}\left[\frac{\partial f(t)}{\partial t}\right] = s\widehat{f}(s) - f(0)$$

$$L_{s}\left[\frac{\partial^{2} f(t)}{\partial t^{2}}\right] = s^{2} \hat{f}(s) - s f(0) - \left[\frac{\partial f(t)}{\partial t}\right]_{t=0}$$

### Fick's Laws

The mass flow also has a direction driven by the gradient of concentration (defined by means of the vector differential operator):

 $\vec{j}_m = -D \, \vec{\nabla} \, C(\vec{x}, t)$ 

In non-vector form (by rotating the x-axis in the direction of the maximum flux and neglecting the variations on y- and z-axes):

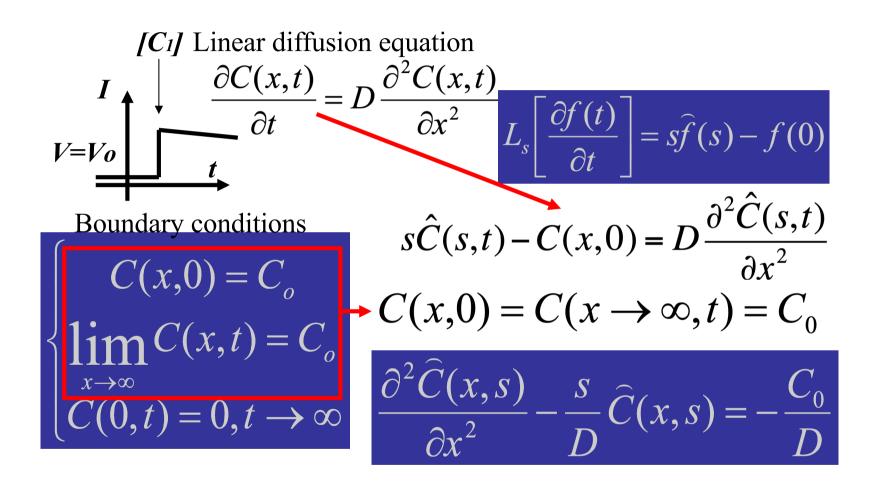
$$j_m \cong -D \frac{\partial C(x,t)}{\partial x}$$

The accumulation rate is provided by the mass flux through a fluidic volume:

$$\frac{\partial C(x,t)}{\partial t} = -\frac{\partial j_m}{\partial x} \longrightarrow \frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

(c) S.Carrara

# The Cottrell Equation



# The Cottrell Equation

$$\frac{\partial^2 \widehat{C}(x,s)}{\partial x^2} - \frac{s}{D} \widehat{C}(x,s) = -\frac{C_0}{D}$$

$$\widehat{C}(x,s) = \frac{C_0}{s} + A(s)e^{-\sqrt{s/D}x} + B(s)e^{s\sqrt{s/D}x}$$

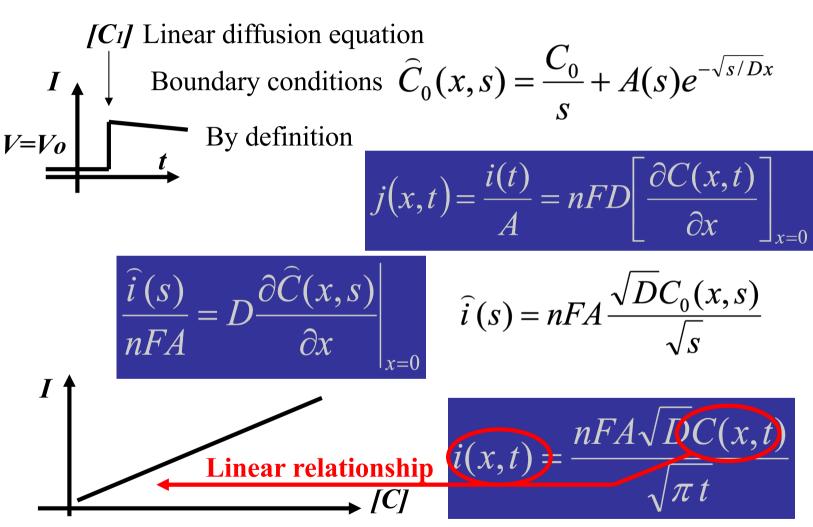
$$\lim_{x \to \infty} C(x,t) = C_0$$

$$L_s[t^n] = \frac{n!}{s^{n+1}}$$

$$\lim_{x \to \infty} \widehat{C}(x,s) = \frac{C_0}{s}$$

$$B(s) = 0, while \ \widehat{C}(x.s) = \frac{C_0}{s} + A(s)e^{-\sqrt{s/D}x}$$

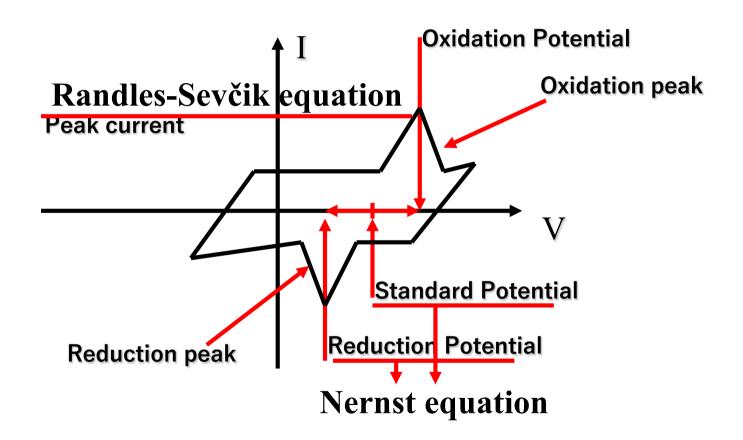
# The Cottrell Equation



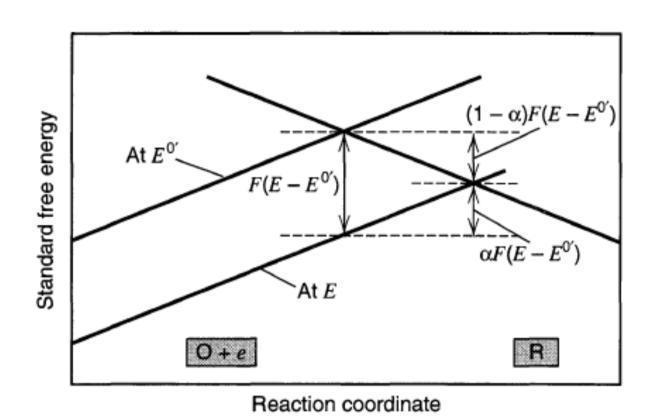
Cottrell equation

(c) S.Carrara

# **Redox reactions from Voltammetry**



# Redox Reactions



(c) S.Carrara

# **Nernst Equation**

Redox Reaction  $O + e \Leftrightarrow R$ Equilibrium Constants  $\begin{cases} k_c = k_c^0 e^{-\frac{\Delta G_c}{RT}} \\ k_a = k_a^0 e^{-\frac{\Delta G_a}{RT}} \end{cases} = k_c^0 e^{-\frac{\Delta G_a^0 + \alpha F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha)F(E - E^0)}{RT}}$ 

@ Equilibrium:

$$E = 0; \alpha = 0.5; k_c = k_a \Rightarrow k_c^0 e^{-\frac{\Delta G_c^0}{RT}} = k_c^0 e^{-\frac{\Delta G_c^0}{RT}} = k^0$$

### **Nernst Equation**

Redox Reaction

$$O + e \overset{\stackrel{K_c}{\longleftrightarrow}}{\underset{K_a}{\longleftrightarrow}} R$$

The current from the redox is

$$O + e \Leftrightarrow R \qquad \begin{cases} k_c = k^0 e^{-\frac{\alpha F(E - E^0)}{RT}} \\ k_a = k^0 e^{\frac{(1 - \alpha)F(E - E^0)}{RT}} \end{cases}$$

$$i = i_c - i_a = nFA[k_cC_O(0,t) - k_aC_R(0,t)]$$

$$i = FAk^{0} \left[ C_{O}(0,t)e^{-\frac{\alpha F(E-E^{0})}{RT}} - C_{R}(0,t)e^{\frac{(1-\alpha)F(E-E^{0})}{RT}} \right]$$

@ Equilibrium:

$$i=0 \Rightarrow C_O(0,t)e^{-rac{lpha F(E-E^0)}{RT}} = C_R(0,t)e^{rac{(1-lpha)F(E-E^0)}{RT}}$$

### **Nernst Equation**

#### @ Equilibrium:

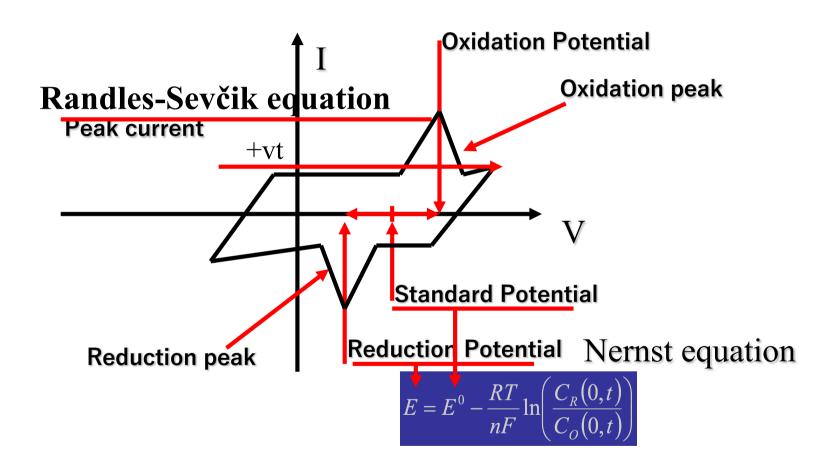
$$i = 0 \Rightarrow C_O(0,t)e^{-\frac{\alpha F(E-E^0)}{RT}} = C_R(0,t)e^{\frac{(1-\alpha)F(E-E^0)}{RT}}$$

$$i = 0 \Rightarrow \frac{C_O(0,t)}{C_R(0,t)} = e^{\frac{F(E-E^0)}{RT}} \Rightarrow \frac{F(E-E^0)}{RT} = \ln \left[\frac{C_O(0,t)}{C_R(0,t)}\right]$$

$$E = E^{0} + \frac{RT}{{}^{n}F} \ln \left[ \frac{C_{O}(0,t)}{C_{R}(0,t)} \right]$$
 Nernst equation

If *n* electrons are involved!

### Redox reactions from Voltammetry



# Randles-Sevčik Equation

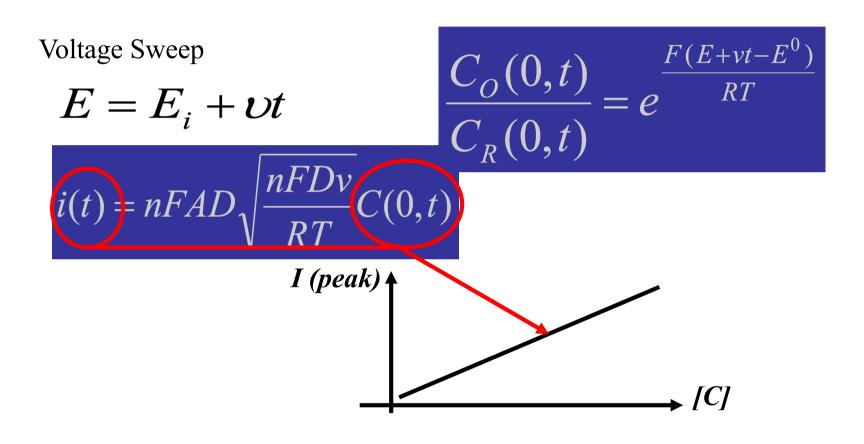
Voltage Sweep 
$$E = E_i + \upsilon t$$
 
$$\widehat{C}_0(x,s) = \frac{C_0}{s} + A(s)e^{-\sqrt{s/D}x}$$
 
$$C_0(0,t) = e^{\frac{F(E+\upsilon t - E^0)}{RT}}$$

$$\frac{C_O(0,t)}{C_R(0,t)} = e^{\frac{F(E+vt-E^0)}{RT}}$$

$$j(x,t) = \frac{i(t)}{A} = nFD \left[ \frac{\partial C(x,t)}{\partial x} \right]_{x=0} \Rightarrow i(t) = nFAD \left[ \frac{\partial C(x,t)}{\partial x} \right]_{x=0}$$

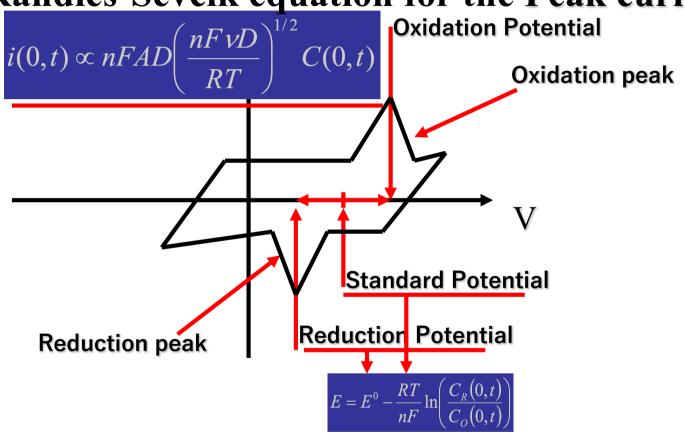
$$\left[\frac{\partial C(x,t)}{\partial x}\right]_{i=i_{peak}} \propto \sqrt{\frac{nFDv}{RT}}C(0,t) \Rightarrow i(t) = nFAD\sqrt{\frac{nFDv}{RT}}C(0,t)$$

### Randles-Sevčik Equation



### Redox reactions from Voltammetry

Randles-Sevčik equation for the Peak current



**Nernst equation**